Menu
×
   ❮     
HTML CSS JAVASCRIPT SQL PYTHON JAVA PHP HOW TO W3.CSS C C++ C# BOOTSTRAP REACT MYSQL JQUERY EXCEL XML DJANGO NUMPY PANDAS NODEJS DSA TYPESCRIPT ANGULAR GIT POSTGRESQL MONGODB ASP AI R GO KOTLIN SASS VUE GEN AI SCIPY CYBERSECURITY DATA SCIENCE INTRO TO PROGRAMMING BASH RUST

Node.js Tutorial

Node HOME Node Intro Node Get Started Node JS Requirements Node.js vs Browser Node Cmd Line Node V8 Engine Node Architecture Node Event Loop

Asynchronous

Node Async Node Promises Node Async/Await Node Errors Handling

Module Basics

Node Modules Node ES Modules Node NPM Node package.json Node NPM Scripts Node Manage Dep Node Publish Packages

Core Modules

HTTP Module HTTPS Module File System (fs) Path Module OS Module URL Module Events Module Stream Module Buffer Module Crypto Module Timers Module DNS Module Assert Module Util Module Readline Module

JS & TS Features

Node ES6+ Node Process Node TypeScript Node Adv. TypeScript Node Lint & Formatting

Building Applications

Node Frameworks Express.js Middleware Concept REST API Design API Authentication Node.js with Frontend

Database Integration

MySQL Get Started MySQL Create Database MySQL Create Table MySQL Insert Into MySQL Select From MySQL Where MySQL Order By MySQL Delete MySQL Drop Table MySQL Update MySQL Limit MySQL Join
MongoDB Get Started MongoDB Create DB MongoDB Collection MongoDB Insert MongoDB Find MongoDB Query MongoDB Sort MongoDB Delete MongoDB Drop Collection MongoDB Update MongoDB Limit MongoDB Join

Advanced Communication

GraphQL Socket.IO WebSockets

Testing & Debugging

Node Adv. Debugging Node Testing Apps Node Test Frameworks Node Test Runner

Node.js Deployment

Node Env Variables Node Dev vs Prod Node CI/CD Node Security Node Deployment

Perfomance & Scaling

Node Logging Node Monitoring Node Performance Child Process Module Cluster Module Worker Threads

Node.js Advanced

Microservices Node WebAssembly HTTP2 Module Perf_hooks Module VM Module TLS/SSL Module Net Module Zlib Module Real-World Examples

Hardware & IoT

RasPi Get Started RasPi GPIO Introduction RasPi Blinking LED RasPi LED & Pushbutton RasPi Flowing LEDs RasPi WebSocket RasPi RGB LED WebSocket RasPi Components

Node.js Reference

Built-in Modules EventEmitter (events) Worker (cluster) Cipher (crypto) Decipher (crypto) DiffieHellman (crypto) ECDH (crypto) Hash (crypto) Hmac (crypto) Sign (crypto) Verify (crypto) Socket (dgram, net, tls) ReadStream (fs, stream) WriteStream (fs, stream) Server (http, https, net, tls) Agent (http, https) Request (http) Response (http) Message (http) Interface (readline)

Resources & Tools

Node.js Compiler Node.js Server Node.js Quiz Node.js Exercises Node.js Syllabus Node.js Study Plan Node.js Certificate

Node.js Performance Diagnostics


Why Performance Matters

Node.js offers various tools and techniques for diagnosing performance issues.

This guide covers built-in tools, and popular third-party solutions, for comprehensive performance analysis.

Performance Tip: Always measure before optimizing.

Use the techniques in this guide to identify actual bottlenecks rather than guessing where performance issues might be.


Understanding Node.js Performance

Performance in Node.js applications can be affected by several factors:

  • CPU-intensive operations that block the event loop
  • Memory leaks and excessive garbage collection
  • I/O bottlenecks (database queries, file operations, network requests)
  • Inefficient code and algorithms
  • Event loop congestion

Diagnosing these issues requires a methodical approach and the right tools.


Built-in Diagnostic Tools

console.time() and console.timeEnd()

The simplest way to measure how long an operation takes:

// Measure execution time
console.time('operation');

// Some operation to measure
const array = Array(1000000).fill().map((_, i) => i);
array.sort((a, b) => b - a);

console.timeEnd('operation');
// Output: operation: 123.45ms

Process Statistics

Node.js provides access to process statistics through the process global object:

// Memory usage
const memoryUsage = process.memoryUsage();
console.log('Memory Usage:');
console.log(` RSS: ${Math.round(memoryUsage.rss / 1024 / 1024)} MB`);
console.log(` Heap Total: ${Math.round(memoryUsage.heapTotal / 1024 / 1024)} MB`);
console.log(` Heap Used: ${Math.round(memoryUsage.heapUsed / 1024 / 1024)} MB`);
console.log(` External: ${Math.round(memoryUsage.external / 1024 / 1024)} MB`);

// CPU usage
const startUsage = process.cpuUsage();

// Simulate CPU work
const now = Date.now();
while (Date.now() - now < 500); // Busy wait for 500ms

const endUsage = process.cpuUsage(startUsage);
console.log('CPU Usage:');
console.log(` User: ${endUsage.user / 1000}ms`);
console.log(` System: ${endUsage.system / 1000}ms`);

// Uptime
console.log(`Process uptime: ${process.uptime().toFixed(2)} seconds`);

Node.js Performance Hooks

Since Node.js 8.5.0, the perf_hooks module provides tools for measuring performance:

const { performance, PerformanceObserver } = require('perf_hooks');

// Create a performance observer
const obs = new PerformanceObserver((items) => {
  items.getEntries().forEach((entry) => {
    console.log(`${entry.name}: ${entry.duration.toFixed(2)}ms`);
  });
});

// Subscribe to performance events
obs.observe({ entryTypes: ['measure'] });

// Mark the beginning of an operation
performance.mark('start');

// Simulate some work
const data = [];
for (let i = 0; i < 1000000; i++) {
  data.push(i * i);
}

// Mark the end and measure
performance.mark('end');
performance.measure('Data processing time', 'start', 'end');

// Clean up marks
performance.clearMarks();

Advanced CPU Profiling

When to Use CPU Profiling

  • Identifying hot functions consuming excessive CPU time
  • Finding optimization opportunities in synchronous code
  • Analyzing event loop blocking operations
  • Comparing performance before and after optimizations

1. V8 Profiler with Source Maps

For applications using TypeScript or transpiled JavaScript, source maps are essential for meaningful profiling results:

Node.js allows accessing the V8 profiler directly for CPU profiling:

const v8Profiler = require('v8-profiler-node8');
const fs = require('fs');
const path = require('path');

// Enable source map support for accurate profiling
require('source-map-support').install();

// Start CPU profiling with source map support
v8Profiler.setGenerateType(1); // Include type information
const profile = v8Profiler.startProfiling('CPU profile', true);

// Run code to profile
function fibonacci(n) {
  if (n <= 1) return n;
  return fibonacci(n - 1) + fibonacci(n - 2);
}

// Simulate both CPU and I/O work
function processData() {
  const start = Date.now();
  fibonacci(35);
  console.log(`CPU work took: ${Date.now() - start}ms`);

  // Simulate async work
  setImmediate(() => {
    const asyncStart = Date.now();
    fibonacci(30);
    console.log(`Async work took: ${Date.now() - asyncStart}ms`);
  });
}

processData();

// Stop profiling after async work completes
setTimeout(() => {
  const profile = v8Profiler.stopProfiling('CPU profile');
  profile.export((error, result) => {
    const filename = path.join(__dirname, 'profile.cpuprofile');
    fs.writeFileSync(filename, result);
    console.log(`CPU profile saved to ${filename}`);
    profile.delete();
  });
}, 1000);

To use the above example, you need to install the v8-profiler package:

npm install v8-profiler-node8

The generated .cpuprofile file can be loaded in Chrome DevTools for visualization.

2. Node.js Built-in Profiling

Node.js has built-in profiling capabilities that can be accessed through command-line flags:

# Start a Node.js application with profiling enabled
node --prof app.js

# Process the generated log file
node --prof-process isolate-0xNNNNNNNN-NNNN-v8.log > processed.txt

Advanced Memory Profiling

Memory Leak Detection Tip: Compare multiple heap snapshots taken at different times to identify objects that aren't being garbage collected as expected.

Heap Snapshots with Chrome DevTools

Heap snapshots can help identify memory leaks by capturing the memory state at a specific moment:

const heapdump = require('heapdump');
const fs = require('fs');
const path = require('path');

// Generate some data that might leak
let leakyData = [];
function potentiallyLeaky() {
  const data = {
    id: Date.now(),
    content: Array(1000).fill('potentially leaky data'),
    timestamp: new Date().toISOString()
  };
  leakyData.push(data);
} 
// Simulate a memory leak with different retention patterns
setInterval(() => {
  potentiallyLeaky();
  // Keep only the last 100 items to simulate a partial leak
  if (leakyData.length > 100) {
    leakyData = leakyData.slice(-100);
  }
}, 100);
// Take heap snapshots at intervals
function takeHeapSnapshot(prefix) {
  const filename = path.join(__dirname, `${prefix}-${Date.now()}.heapsnapshot`);
  heapdump.writeSnapshot(filename, (err, filename) => {
    if (err) {
      console.error('Failed to take heap snapshot:', err);
    } else {
      console.log(`Heap snapshot saved to ${filename}`);
    }
  });
}
// Initial snapshot takeHeapSnapshot('heap-initial');
// Take periodic snapshots
setInterval(() => {   takeHeapSnapshot('heap-periodic');
}, 10000);
// Force garbage collection before final snapshot
setTimeout(() => {
  if (global.gc) {
    global.gc();
    console.log('Garbage collection forced');
  }
  takeHeapSnapshot('heap-final');
}, 30000);

To use the above example, you need to install the heapdump package:

npm install heapdump

Heap snapshots can be analyzed in Chrome DevTools to identify memory leaks.


Event Loop and Latency Analysis

Event Loop Metrics to Monitor

  • Event loop lag (time between event loop ticks)
  • Active handles and requests
  • Pending async operations
  • Garbage collection pauses

The event loop is central to Node.js performance. Blocking it causes performance degradation:

const toobusy = require('toobusy-js');
const http = require('http');

// Configure thresholds (in milliseconds)
toobusy.maxLag(100); // Maximum allowed lag before considering server too busy
toobusy.interval(500); // Check interval for event loop lag

// Create HTTP server with event loop monitoring
const server = http.createServer((req, res) => {
  // Check if event loop is overloaded
  if (toobusy()) {
    res.statusCode = 503; // Service Unavailable
    res.setHeader('Retry-After', '10');
    return res.end(JSON.stringify({
      error: 'Server is too busy',
      message: 'Please try again later',
      status: 503
    }));
  }
  // Simulate some work based on URL
  if (req.url === '/compute') {
    // CPU-intensive work
    let sum = 0;
    for (let i = 0; i < 1e7; i++) {
      sum += Math.random();
    }
    res.end(`Computed: ${sum}`);
  } else {
    // Normal response
    res.end('OK');
  }
});
// Add error handling
server.on('error', (err) => {
  console.error('Server error:', err);
});
// Start server
const PORT = process.env.PORT || 3000;
server.listen(PORT, () => {
  console.log(`Server running on port ${PORT}`);
});
// Monitor event loop lag and memory usage
setInterval(() => {
  const lag = toobusy.lag();
  const mem = process.memoryUsage();
  console.log(`Event loop lag: ${lag}ms`);
  console.log(`Memory usage: ${Math.round(mem.heapUsed / 1024 / 1024)}MB / ${Math.round(mem.heapTotal / 1024 / 1024)}MB`);
}, 1000);
// Graceful shutdown
process.on('SIGINT', () => {
  console.log('Shutting down...');
  server.close(() => {
    process.exit(0);
  });
});

To use the above example, you need to install the toobusy-js package:

npm install toobusy-js

Flame Graphs

Flame graphs provide a visual representation of CPU sampling, helping to identify where time is spent in your application:

# Using 0x for flame graphs (install globally)
npm install -g 0x

# Run your application with 0x
0x app.js

# A browser will open with the flame graph visualization when the process exits

Benchmarking

Benchmarking helps compare different implementations to choose the most efficient one:

const Benchmark = require('benchmark');
const suite = new Benchmark.Suite;

// Add tests
suite
  .add('RegExp#test', function() {
    /o/.test('Hello World!');
  })
  .add('String#indexOf', function() {
    'Hello World!'.indexOf('o') > -1;
  })
  .add('String#includes', function() {
    'Hello World!'.includes('o');
  })
  // Add listeners
  .on('cycle', function(event) {
    console.log(String(event.target));
  })
  .on('complete', function() {
    console.log('Fastest is ' + this.filter('fastest').map('name'));
  })
  // Run benchmarks
  .run({ 'async': true });

To use the above example, you need to install the benchmark package:

npm install benchmark

Node.js Inspector

Node.js has an integrated debugger and profiler accessible through Chrome DevTools:

# Start an application with the inspector
node --inspect app.js

# Start and immediately break (for debugging)
node --inspect-brk app.js

Open Chrome and navigate to chrome://inspect to access DevTools for your Node.js application. This provides access to:

  • CPU profiler
  • Memory heap snapshots
  • Memory allocation timeline
  • Debugger

Clinic.js Suite

Clinic.js is a collection of tools for diagnosing performance issues in Node.js applications:

# Install the Clinic.js suite
npm install -g clinic

# Use Doctor to identify issues
clinic doctor -- node app.js

# Use Flame to generate CPU flame graphs
clinic flame -- node app.js

# Use Bubbleprof for async operations analysis
clinic bubbleprof -- node app.js

Practical Performance Diagnosis

Step 1: Establish Baseline Metrics

Before optimizing, establish baseline metrics for your application:

const autocannon = require('autocannon');
const { writeFileSync } = require('fs');

// Run a benchmark against your application
const result = autocannon({
  url: 'http://localhost:8080',
  connections: 100,
  duration: 10
});

// Save the results
result.on('done', (results) => {
  console.log('Baseline performance metrics:');
  console.log(` Requests/sec: ${results.requests.average}`);
  console.log(` Latency: ${results.latency.average}ms`);

  writeFileSync('baseline-metrics.json', JSON.stringify(results, null, 2));
});

Step 2: Identify Bottlenecks

Use profiling to identify bottlenecks:

  1. CPU profiling for compute-intensive operations
  2. Memory snapshots for memory leaks
  3. Flame graphs for call stack analysis
  4. Event loop monitoring for I/O and callback delays

Step 3: Fix and Verify

After applying optimizations, verify improvements against your baseline.


Common Performance Issues and Solutions

1. Memory Leaks

Signs: Increasing memory usage over time that doesn't plateau.

Solutions:

  • Take heap snapshots at intervals and compare
  • Check for global variables, event listeners, and closures that retain references
  • Implement proper cleanup when objects are no longer needed

2. Long-Running Operations

Signs: High event loop lag, inconsistent response times.

Solutions:

  • Move CPU-intensive work to worker threads
  • Break long tasks into smaller chunks using setImmediate/process.nextTick
  • Consider offloading to dedicated services

3. Inefficient Database Queries

Signs: Slow response times, high latency.

Solutions:

  • Profile database operations
  • Optimize queries with proper indexing
  • Use connection pooling
  • Implement caching for frequently accessed data


×

Contact Sales

If you want to use W3Schools services as an educational institution, team or enterprise, send us an e-mail:
sales@w3schools.com

Report Error

If you want to report an error, or if you want to make a suggestion, send us an e-mail:
help@w3schools.com

W3Schools is optimized for learning and training. Examples might be simplified to improve reading and learning. Tutorials, references, and examples are constantly reviewed to avoid errors, but we cannot warrant full correctness of all content. While using W3Schools, you agree to have read and accepted our terms of use, cookie and privacy policy.

Copyright 1999-2025 by Refsnes Data. All Rights Reserved. W3Schools is Powered by W3.CSS.