Node.js Advanced TypeScript
Advanced TypeScript for Node.js
This guide dives into advanced TypeScript features and patterns specifically useful for Node.js applications.
For comprehensive TypeScript documentation, visit TypeScript Tutorial.
Advanced Type System Features
TypeScript's type system provides powerful tools for creating robust and maintainable Node.js applications.
Here are the key features:
1. Union and Intersection Types
// Union type
function formatId(id: string | number) {
return `ID: ${id}`;
}
// Intersection type
type User = { name: string } & { id: number };
2. Type Guards
type Fish = { swim: () => void };
type Bird = { fly: () => void };
function isFish(pet: Fish | Bird): pet is Fish {
return 'swim' in pet;
}
3. Advanced Generics
// Generic function with constraints
function getProperty<T, K extends keyof T>(obj: T, key: K): T[K] {
return obj[key];
}
// Generic interface with default type
interface PaginatedResponse<T = any> {
data: T[];
total: number;
page: number;
limit: number;
}
// Using generic types with async/await in Node.js
async function fetchData<T>(url: string): Promise<T> {
const response = await fetch(url);
return response.json();
}
4. Mapped and Conditional Types
// Mapped types
type ReadonlyUser = {
readonly [K in keyof User]: User[K];
};
// Conditional types
type NonNullableUser = NonNullable<User | null | undefined>; // User
// Type inference with conditional types
type GetReturnType<T> = T extends (...args: any[]) => infer R ? R : never;
function getUser() {
return { id: 1, name: 'Alice' } as const;
}
type UserReturnType = GetReturnType<typeof getUser>; // { readonly id: 1; readonly name: "Alice"; }
5. Type Inference and Type Guards
TypeScript's type inference and type guards help create type-safe code with minimal annotations:
// Type inference with variables
const name = 'Alice'; // TypeScript infers type: string
const age = 30; // TypeScript infers type: number
const active = true; // TypeScript infers type: boolean
// Type inference with arrays
const numbers = [1, 2, 3]; // TypeScript infers type: number[]
const mixed = [1, 'two', true]; // TypeScript infers type: (string | number | boolean)[]
// Type inference with functions
function getUser() {
return { id: 1, name: 'Alice' }; // Return type inferred as { id: number; name: string; }
}
const user = getUser(); // user inferred as { id: number; name: string; }
console.log(user.name); // Type checking works on inferred properties
Advanced TypeScript Patterns for Node.js
These patterns help build more maintainable and type-safe Node.js applications:
1. Advanced Decorators
// Parameter decorator with metadata
function validateParam(target: any, key: string, index: number) {
const params = Reflect.getMetadata('design:paramtypes', target, key) || [];
console.log(`Validating parameter ${index} of ${key} with type ${params[index]?.name}`);
}
// Method decorator with factory
function logExecutionTime(msThreshold = 0) {
return function (target: any, key: string, descriptor: PropertyDescriptor) {
const originalMethod = descriptor.value;
descriptor.value = async function (...args: any[]) {
const start = Date.now();
const result = await originalMethod.apply(this, args);
const duration = Date.now() - start;
if (duration > msThreshold) {
console.warn(`[Performance] ${key} took ${duration}ms`);
}
return result;
};
};
}
class ExampleService {
@logExecutionTime(100)
async fetchData(@validateParam url: string) {
// Implementation
}
}
2. Advanced Utility Types
// Built-in utility types with examples
interface User {
id: number;
name: string;
email?: string;
createdAt: Date;
}
// Create a type with specific properties as required
type AtLeast<T, K extends keyof T> = Partial<T> & Pick<T, K>;
type UserCreateInput = AtLeast<User, 'name' | 'email'>; // Only name is required
// Create a type that makes specific properties required
WithRequired<T, K extends keyof T> = T & { [P in K]-?: T[P] };
type UserWithEmail = WithRequired<User, 'email'>;
// Extract function return type as a type
type UserFromAPI = Awaited<ReturnType<typeof fetchUser>>;
3. Type-Safe Event Emitters
import { EventEmitter } from 'events';
type EventMap = {
login: (userId: string) => void;
logout: (userId: string, reason: string) => void;
error: (error: Error) => void;
};
class TypedEventEmitter<T extends Record<string, (...args: any[]) => void>> {
private emitter = new EventEmitter();
on<K extends keyof T>(event: K, listener: T[K]): void {
this.emitter.on(event as string, listener as any);
}
emit<K extends keyof T>(
event: K,
...args: Parameters<T[K]>
): boolean {
return this.emitter.emit(event as string, ...args);
}
}
// Usage
const userEvents = new TypedEventEmitter<EventMap>();
userEvents.on('login', (userId) => {
console.log(`User ${userId} logged in`);
});
// TypeScript will show an error for incorrect argument types
// userEvents.emit('login', 123);
// Error: Argument of type 'number' is not assignable to 'string'
TypeScript Best Practices for Node.js
Key Takeaways:
- Leverage TypeScript's advanced type system for better code safety and developer experience
- Use generics to create flexible and reusable components without losing type safety
- Implement decorators for cross-cutting concerns like logging, validation, and performance monitoring
- Utilize utility types to transform and manipulate types without code duplication
- Create type-safe abstractions for Node.js-specific patterns like event emitters and streams
Performance Considerations:
- Be mindful of complex types that might impact compilation time
- Use
type
overinterface
for complex type operations - Consider using
as const
for literal types when appropriate - Use
unknown
instead ofany
for type-safe dynamic typing
For comprehensive TypeScript documentation and examples, visit our TypeScript Tutorial.